SOXE transcription factors form selective dimers on non-compact DNA motifs through multifaceted interactions between dimerization and high-mobility group domains

نویسندگان

  • Yong-Heng Huang
  • Aleksander Jankowski
  • Kathryn S. E. Cheah
  • Shyam Prabhakar
  • Ralf Jauch
چکیده

The SOXE transcription factors SOX8, SOX9 and SOX10 are master regulators of mammalian development directing sex determination, gliogenesis, pancreas specification and neural crest development. We identified a set of palindromic SOX binding sites specifically enriched in regulatory regions of melanoma cells. SOXE proteins homodimerize on these sequences with high cooperativity. In contrast to other transcription factor dimers, which are typically rigidly spaced, SOXE group proteins can bind cooperatively at a wide range of dimer spacings. Using truncated forms of SOXE proteins, we show that a single dimerization (DIM) domain, that precedes the DNA binding high mobility group (HMG) domain, is sufficient for dimer formation, suggesting that DIM : HMG rather than DIM:DIM interactions mediate the dimerization. All SOXE members can also heterodimerize in this fashion, whereas SOXE heterodimers with SOX2, SOX4, SOX6 and SOX18 are not supported. We propose a structural model where SOXE-specific intramolecular DIM:HMG interactions are allosterically communicated to the HMG of juxtaposed molecules. Collectively, SOXE factors evolved a unique mode to combinatorially regulate their target genes that relies on a multifaceted interplay between the HMG and DIM domains. This property potentially extends further the diversity of target genes and cell-specific functions that are regulated by SOXE proteins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

G-protein Coupled Receptor Dimerization

A growing body of evidence suggests that GPCRs exist and function as dimers or higher oligomers. The evidence for GPCR dimerization comes from biochemical, biophysical and functional studies. In addition, researchers have shown the occurrence of heterodimerization between different members of the GPCR family. Two receptors can interact with each other to make a dimer through their extracellular...

متن کامل

Tyrosine phosphorylation regulates the partitioning of STAT1 between different dimer conformations.

The activation/inactivation cycle of STAT transcription factors entails their transition between different dimer conformations. Unphosphorylated STATs can dimerize in an antiparallel conformation via extended interfaces of the globular N-domains, whereas STAT activation triggers a parallel dimer conformation with mutual phosphortyrosine:SH2 domain interactions, resulting in DNA-binding and nucl...

متن کامل

Comprehensive prediction in 78 human cell lines reveals rigidity and compactness of transcription factor dimers.

The binding of transcription factors (TFs) to their specific motifs in genomic regulatory regions is commonly studied in isolation. However, in order to elucidate the mechanisms of transcriptional regulation, it is essential to determine which TFs bind DNA cooperatively as dimers and to infer the precise nature of these interactions. So far, only a small number of such dimeric complexes are kno...

متن کامل

Glucocorticoid receptor homodimers and glucocorticoid-mineralocorticoid receptor heterodimers form in the cytoplasm through alternative dimerization interfaces.

Steroid hormone receptors act to regulate specific gene transcription primarily as steroid-specific dimers bound to palindromic DNA response elements. DNA-dependent dimerization contacts mediated between the receptor DNA binding domains stabilize DNA binding. Additionally, some steroid receptors dimerize prior to their arrival on DNA through interactions mediated through the receptor ligand bin...

متن کامل

Combinatorial bZIP dimers display complex DNA-binding specificity landscapes

How transcription factor dimerization impacts DNA-binding specificity is poorly understood. Guided by protein dimerization properties, we examined DNA binding specificities of 270 human bZIP pairs. DNA interactomes of 80 heterodimers and 22 homodimers revealed that 72% of heterodimer motifs correspond to conjoined half-sites preferred by partnering monomers. Remarkably, the remaining motifs are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015